
AO-A098 755 GENERAL RESEARCH CORP SANTA BARBARA CA F/6 9/2
COBOL AUTOMATED VERIFICATION SYSTEM: STUDY PHASECU)
MAR 81 R MELTON, G GREENBURG, M SHARP F30602 AG-C-0I0l

UNCLASSIFIED RADC-TR-81-11N

1: LINllfflffff

IN , 1.8

1.25 _!26

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREA0 (MATNDARDS 196 A

J

RADC-TR-S 1-11
Final Tecnial Report
Maidt 191

00 COBOL AUTOMATED VERIFICATION
j SYSTEM: STUDY PHASE

Rkhard Melton
Gary Greenburg I

-Cal Michael Sharp

APPROVED OR PUBLIC RELEASE; DISTRIBUTION UNUMITED

1C
-o

)A

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441

.2 81

This report has been reviewed by the RADC Public Affairs Office (PA)
and is releasable to the National Technical Information Service (NTIS). At
NTIS it will be releasable to the general public, including foreign nations.

RADC-TR-81-11 has been reviewed and is approved for publication.

APPROVED:

LAWRENCE M. LOMBARDO
Project Engineer

APPROVED:

LllCINIAK, Co(lnel, USAF'

i. Information Sciences Division

FOR THE COMMANDER:

JOHN P. RUSS
Acting Chief, Plans Office

If your address has changed or if you wieO to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (ISIE), Griffiss AFB NY 13441. This will assist us in maintaining
a current mailing list.

Do not return this copy. Retain or destroy.

UNCLASSIFIED
SEC , CLASSIFICATION OF THIS PAGE (When Dee. Eniored)

REPORT DOCUMENTATION PAGE RND STRUCTIONS
BEFORE COMPLETING FORM

(I RP 2. 7 olT ACCESSION NO. I. RECIPIENT'S CATALOG NUMBER

RADC R-81-17___________

4. TITLE (and Subtitle) ('. . TV*&- ~6pOf'twp BBEji\i F~~ina ecncalept

. £OBOL NJTOMATED VERIFICATION SYSTEM: F 8Vi.

STUDY PHASE. Me"

N/A
7. AU'TWORT a. CONTRACT OR GRANT NUMBER(a)

Richard~relton 7 F0~-~--1l
Gary/Greenburg i F30602-8 -C-6
Michael A harp NAME A A R

-0V

4s RES1. PROGRAM ELEMENT. PROJECT. TASK

Santa Barbara CA 93111 253 205

I,. "CONTROLL.ING OFFICE NAME AND ADDRESS 0^79,.. .) r

Rome Air Development Center (ISLE) i' 1 1ardB8

Griffiss AFB NY 13441 UMSER OF PAGES,"

184
14. MONITORING AGENCY NAME & AOORESSif different from Contoillng Office) IS. SECURITY CLASS. (of1lTRIpoH)

Same UNCLASSIFIED

IS.. DECLASSIFICATION/ OOWNGRAOING
SCHEDULE

N/A
1S. DISTRIBUTION STATEMENT (of this Repo,)

Approved for public release; distribution unlimited

1?. DISTRIBUTION STATEMENT (of the abetract entered in Block 2G. it different from Report)

Same

IS. SUPPLEMENTARY NOTES

RADC Project Engineer: Lawrence M. Lombardo (ISLE)

19. KEY WORDS (Continue on reverse side itf noceesery e$d identify by block numiber)

Computer Software Testing Software Development Tool

Computer Software Verification

COBOL 68
COBOL 74

20. ABSTRACT (Continue on reverse ide It neceteary md Identify by block number)

This report presents the results of a study to specify the required
capabilities and high-level design of an automated tool to support the
testing and verification of COBOL software systems. Included is a state-
of-the-art review of software testing and verification with emphasis on
techniques applicable to COBOL programs.

DD I AN 1473 EDITION OF I NOV is OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

1/ / ,/j'

UNCLASSIFIED
49CUMITV Ct.AWfIC&tOW air THIS PAG(UIkm Ot* gaibond)

UNCLASSIFIED
SECURITY CLASSPICAIIU Of PAGE~beh DdW Eae*..E)

ABSTRACT

The COBOL language, and automated software testing tools, have

been studied in order to design an Automated Verification System for

COBOL. The proposed functions and design of the system are summarized

in this report. Details of the system are presented in the ^CAVS

Functional Description" and "CAVS System/Subsystem Specification.' To

provide a perspective for the capabilities of the proposed system, this

report contains a critique of the COBOL language, a description of

methods of software testing, and a characterization of errors in COBOL.

Considerations. for future capabilities of the system are also outlined.

K

Acessionl For
!ITTS GRA&I

r~CTAB [
.'nIounced [3

,Stificntio

and/or

i. .. ; . I I,

CONTENTS

SECTION ___________________________ PAGE

ABSTRACT i

1 INTRODUCTION1-

2 TIMETABLE 2-1

3 STUDY -- THE COBOL LANGUAGE 3-1

3.1 Historical Background 3-1

3.2 ANS COBOL - 1968 and 1974 3-2

3.3 The Nature of COBOL 3-3

4 STUDY -- SOFTWARE TESTING AND VERIFICATION 4-1

4.1 Introduction 4-1

4.2 Testing Methods 4-3

4.3 Software Tools 4-10

5 A SYSTEM FOR THE AUTOMATED VERIFICATION OF COBOL 5-1
PROGRAMS

5.1 Capabilities 5-1

5.2 Design 5-6

5.3 operation 5-lu

6 ENHANCEMENTS BEYOND CURRENT STATEMENT OF WORK 6-1

6.1 Continuing Needs of CAVS Users 6-1

6.2 Summary of Proposed Enhancements 6-1

6.3 Characteristics of Proposed Enhancements 6-5

7 BIBLIOGRAPHY 7-1

6di

APPENDIX

A MATERIAL REFERENCED IN PHASE I

B COBOL IMPLEMENTATION SUBSET

iv

F IGURES

NO. PAGE

2.1, Proposed Schedule 2-1

5.1 Overview of CAVS 5-5

5.2 CAVS Design Overview 5-11

5.3 CAVS User Options 5-14

6.1 Project Library verview Display 6-7

6.2 Status Display for One Module 6-8

6.3 CAVS Suggestion Capability 6-9

V

TABLES

NO. PAGE

4.1 Software Tools Examined in Study 4-12

4.2 CAVS: An Integrated Tool 4-16

5.1 Summary of CAVS Function 5-2
6.1 Summary of Proposed Enhancements 6-2

vi

Vi /

The purpose of this contractual effort was to determine and specify

the required capabilities for an automated testing and verification

system for COBOL software systems. The effort provided a significant

review of the state-of-the-art of software testing and verification,

with emphasis placed on techniques applicable to COBOL programs.

The resulting capabilities were specified in two separate documents-

a Functional Description and a System/Subsystem Specification, which

will be utilized during the implementation phase of the effort. The

availability of an automated testing and verification system for

COBOL is significant in that it will enhance Air Force software

development capability and result in a more cost-effective and

reliable product. This effort was responsive to the objective of the

RADC Technology Plan, TPO 4G3, "Software Development and Test Tools."

(LAWRCN .MLOMBARDO
Project Engineer

Vii

I INTRODUCTION

General Research Corporation is under a two-phase contract with

Rome Air Development Center to design and implement an automated tool to

assist in the development, testing, verification, and maintenance of

COBOL software.

Phase 1 of this contract was (1) the study of the COBOL language

and recent advances in the testing and verification of computer soft-

ware, with emphasis on techniques applicable to COBOL programs, and (2)

the development of a functional description and system/subsystem speci-

fications for the tool.

Phase 2 will be the implementation, testing, and user training

period.

This final report on Phase 1 describes our progress through the

study phase, presents highlights of the functional description and

system/subsystem specifications (which are given in detail elsewhere),

reports our findings and conclusions, and proposes future capabilities

for consideration.

General Research Corporation's Software Quality Department made an

in-depth study of COBOL: the structure of the language, its history, the

type of installations which use it, the reasons they chose it, the

problems they have encountered in programming in the language, COBOL's

limitations and advantages, and the computers on which it is being used.
We examined a wide cross-section of COBOL tools available on the market

today.

We found that (1) the majority of available commercial COBOL

software tools were designed for IBM systems, since IBM commands such a

large portion of the market, and (2) although many of the tools avail-

able today offer good testing features, no one offers more than one or

--

two of the available methods. To put together a comprehensive software

quality package would require purchasing several tools, each with its

own command language and eccentricities. Further, communication between

the tools would be quite difficult; not all the tools are available for

a particular brand of computer; and many of the tools have poor documen-

tation. Also, since they are generally written in assembly language or

a scientific language such as Fortran or PLI, maintenance would be

difficult.

The COBOL Automated Verification System (CAVS) is intended to be a

comprehensive software-quality package that does not suffer from these

deficiencies. CAVS will be written in American National Standard COBOL

- 1974. CAVS will accept for testing analysis any COBOL program written

in ANSI-COBOL 1968 or ANSI-COBOL 1974 for the Univac, Honeywell, or DEC

VAX computer systems. The COBOL compilers for these computers are not

exactly alike; therefore CAVS will be written in a subset of ANSI-COBOL

1974 which is compilable on all three. By this method, CAVS will be

made portable rather than having to be written in three versions.

CAVS will be implemented with the well-proven methodology of

structured, modular design. This will permit easy maintenance and

modification in the event of later enhancements, changes in the computer

system, or changes in the design of CAVS.

In short, CAVS will be a comprehensive collection of the most

current techniques for software testing and program development,

organized into one tool and requiring one easy-to-execute command

language.

DOCUMENTS DEVELOPED DURING PHASE I

1. Functional Description

2. System/Subsystem Specification

3. Final Report - Study Phase

4. Draft Preliminary User's Manual

1-2

DOCUMENTS TO BE DEVELOPED DURING PHASE 2

1. User's Manual

2. Maintenance Manual

3. Test Plan

4. Program Specification

5. Final Report

6. Training Material

7. Testing Report

1-3

2 TIMETABLE

The following chart presents the schedule of activities for Phase

2 and the DMA option of the COBOL Automated Verification System

project.

FIRST YEAR SECOND YEAR

1__2_3_4_5_r12341689 101il112 1 213 1415 61789

PHASE I1- SOFTWARE ~H I ~ ').
IMPLEMENT ON VAX
INITIAL DELIVERY (RADC)
TEST AT PROCI

MAINTENANCE (RADC)
FINAL DELIVERY (RAOC)
RE-MOST AT DMAAC &ODMAHTC
TEST AT OMAAC & DMAHTCI
MAINTENANCE (OMAAC &DMANTC) I
ORIENTATION (USER) (DMAAC & DMAHTC) I

MAINTENANCE COURSES IOMAHTC)

PHASE IIREPORTS
STATUS REPORTS
USER'S MANUAL (MADC)

MAINTENANCE MANUAL (RADC)
TEST PLAN (RASC)

PROGRAM SPEC.
USER'S MANUAL (DMAAC & DMAHTC) I
MAINT. MANUAL (DMAAC & OMAHTC) I
TEST PL.AN (OMAAC & OMAHTC) I I
USER TRAIN. MATER.'I II j4
MAIN. TRAIN. MAIER.*1 11 1

A DRAFT VERSION
A FINAL VERSION

.GOVERNMENT OPTION

Figure 2.1. Proposed Implementation Schedule for CAVS

2-1

3 THE COBOL LANGUAGE

3.1 HISTORICAL BACKGROUND

During the 1950s as manufacturers entered the computer business,

each one developed its own computer programming language for its own

machines. Program portability was non-existent and it became increas-

ingly difficult for programmers to be mobile. The Federal Government,

the largest user of computers, became concerned about the need for a

"common" programming language for business applications of data pro-

cessing.

In 1959 the original specifications for the COBOL language were

drawn up by a group of computer users and manufacturers. The first

documentation was distributed in April 1960. The early 1960s brought

several revisions to COBOL, each one making the language less "common"

to the different computers in use at that time.

Again, the manufacturers assembled and developed a new, "standard"

COBOL called American National Standard COBOL (ANS COBOL). The new

language gained widespread acceptance in the US business sector and

throughout the world. The further development and definition of COBOL

is the function of the CODASYL (Conference On Data System Language)

COBOL Programming Language Committee.

The standard of the language in the US (an extensive subset of the

full CODASYL COBOL definition) is the American National Standard COBOL,

X3.23-1974, as approved by the American National Standards Institute

(ANSI). This has replaced the previous ANS COBOL X3.23-1968. A new ANS

COBOL should be completed before the end of 1981.

3-1

3.2 ANS COBOL - 1968 AND 1974

tINS COBOL-1968 was the first effort by the CODASYL-ANSI group to

define COBOL as a programming language to be a standard throughout the

world on all those computer systems which chose to conform to its

guidelines.

After a few years of working with these guidelines, the group

found that the main skeleton of the language was homogeneous among most

of the participating computer users. However, due to lack of specifi-

city in some guidelines and the differences in the hardware and design

of the computer systems, some sections of the language were markedly

different from one machine to another. Gathering all this information,

* the CODASYL group assembled again and produced a new set of more

specific guidelines and released ANS COBOL-1974.

The ANS-74 version of COBOL was created to (1) delete sections

that hindered efficient coding or standardization, (2) add sections to

enhance COBOL's capabilities, and (3) resolve differences or ambiguities

created by the different compiler manufacturers' versions of the

language. The third Item was accomplished by being more specific in the

* wording of those sections of the Standard, and by requiring the compiler

manufacturers to adhere more closely to the specifications.

A great improvement over ANS COBOL-1968 had been realized. As the

computer manufacturers finished their versions of COBOL according to

ANS COBOL-1974 specifications, and the different versions were compared,

it was found that there were far fewer differences this time, although

they were not identical because of the inherent differences mentioned

above. Each manufacturer respected the guidelines and any serious

deviations were noted as extensions to the ANS.

3-2

Our study has had three objectives: (1) determine the differences

between 1968 and 1974 ANS COBOL to make certain our AVS will recognize

both versions, (2) determine differences between the computer manufac-

turers' dialects for the same reason, and (3) develop a skeleton COBOL

(Appendix B) common to Univac, Honeywell, and DEC VAX machines in which

to write our AVS.

COBOL Dialect Differences. A truly portable COBOL AVS must recognize

not only the two standards, 1968 and 1974, but also the dialects of

different computers. Design and operational differences exist between

computers, and although each satisfactorily compiles a program which

meets the requirements set by the Standards committee, it will not

compile a program which uses another manufacturer's enhancements to the

standard. Users at each installation make use of these enhancements.

3.3 THE NATURE OF COBOL

COBOL was created to solve the special data processing problems of

the business world. The language was not designed to solve complex

mathematical or scientific problems or to facilitate number-crunching

computer analysis, but rather to expedite the handling of everyday

business affairs with great speed and accuracy. COBOL was created to

process accounting, payroll, inventory, tax, and data base maintenance

programs in a manner which allowed efficient use of large data files of

information. Most business programmers are not highly-trained scien-

tists, so the syntax or wording of the language was designed to be as

similar to everyday English as possible. Importance was placed not so

much on features such as mathematical functions and speed of calcula-

tions as on efficient input and output of large data files stored on

magnetic tape or disk.

3-3

A typical COBOL system could be described as a program (with

usually not more than five subroutines) of approximately 1000-5000 lines

of code. The program is designed to create or update a large f ile of

data and then produce update and error reports. Mathematical operations

are mostly arithmetical: add, subtract, multiply, and divide. Data is

read into the computer usually from secondary storage such as magnetic

tape or disk, updated or selected by conditional statements, then

reformatted for printing or storage.

A business-oriented data processing problem can be broken down

into four distinct groups of logically related information:

1. Identification of the type of problem (accounting, payroll,

etc.)

2. The data processing environment in which the problem is to

be solved (the computer and peripheral equipment needed to

solve the problem).

3. Description of the data to be processed, the format of the

data in a record, and the format of records in a f ile. In

addition, the organization of the files must be described,

and the processing mode used must be stated.

4. The procedure(s) by which the data is to be processed to

solve the problem.

The COBOL language is structured to accomodate these four groups

of logically related information, in four named divisions: IDENTIFICA-

TION, ENVIRONMENT, DATA, and PROCEDURE. Every COBOL program must

contain these four sections, and the structure of the language dictates

a specific format to be used to describe the information in each.

3-4

COBOL Errors. Martin I analyzed the type of errors occurring in deliver-

ed COBOL programs in an attempt to evaluate the effect of complexity on

error frequency. Commercial and research COBOL programs running an

Honeywell 6060 and NCR 820U systems were tested by a source program

analyzer. In summary, he found the following types and frequencies of

errors.

Error Type Percentage of Total Errors

Logical 25

Data Handling

Input/Output 16

Computational 11

Interface (Subprograms) 9

Data Base

Other 14

Analyzing this table, we see that 36% of the total errors were

those types of errors which occur uniformly among most computer lan-

guages, the logic and computational errors. However, the errors which

arise from the data handling, input/output, and data base sections,

typically COBOL errors, account for 41% of the total errors.

C. E. Martin, A Model for Estimating the Number of Residual
Errors in COBOL Programs, Ph.D. Thesis, Auburn University CI-77-97.

3-5

An internal Honeywell study Ion properties of COBOL programs

compared the static and dynamic characteristics of commercial programs.

Researchers used a source program analyzer to count the occurrences of

critical COBOL keywords. Dynamic performance was monitored by executing

instrumented versions of the same programs. The study concluded:

LI The most frequently coded source statement type was MOVE,

followed by GO TO, IF, WRITE, ADD, and PERFORM, in that

order.

* The most frequently executed statement was IF, followed by

GO TO, ADD, MOVE, PERFORM, and READ in that order. IF

statements made up almost half of the total statements

executed.

* The static and dynamic nature of programs differs greatly.

Simple inspection and static analysis will not yield a valid

picture of run-time behavior.

The large number of IF-statement executions appears consistent

with the observation that most commercial COBOL programs input large

amounts of data to be either tested by conditional statements for

certain properties, selected for modification, or output in reports,

rather than perform extensive arithmetic operations.

R.J. Chevance and T. Heidet, "Static Profile and Dynamic Behavior of
COBOL Programs", SIGPLAN Notices, Vol. 13, No. 1, April 1978.

3-6

4 SOFTWARE TESTING AND VERIFICATION

4.1 INTRODUCTION

One of the goals of this phase of the CAVS project was, through

research and analysis of current tools and techniques, to develop a

methodology for systematically and comprehensively testing COBOL

software.

Usually, COBOL software is tested only according to its devel-

oper' s intuitions, if it is tested at all. Since the reliability of

software is at least partially dependent upon the thoroughrnoss of its

testing, increased testing therefore contributes to increased relia-

bility.

Simple computer programs can be comprehensively tested without

difficulty. When computer software becomes complex, usually by length

of program or number of paths possible so that human intuition is

inadequate to deal with its subtleties, the testing activity must be

based on a systematic and rigorous methodology. Most COBOL software

systems are lengthy or complex, so that the advantages of an automated

verification system become pronounced and desirable.

Approaches to Software Quality. The computer science community has

recognized the problems concerning software correctness and has been

developing systematic approaches to increase the reliability of software

and simultaneously reduce the overall cost of producing it.

"Synthesis" techniques generally try to increase software quality

by keeping software problems from happening in the first place. For

example:

* Structured programming disciplines reduce the complexity of

software (and thereby enhance its quality and reliability)

by constraining the control structures of the programming

language used.

4-1

0 Chief programmer teams assign a talented person entire

responsibility for all aspects of a software system,

including its ultimate effectiveness and reliability.

0 Software design methodologies such as "top down" or "bottom

up" systematize the production of software and thereby

improve the quality of the programs.

The alternative, to deal with software which has already been

developed (or is in the final stages of development), involves two

primary "analysis" approaches:

0 Program proof demonstrates the correctness of programs by

treating them as if they were mathematical theorems. An

automated theorem prover is often used to assist in the

construction of proofs.

* Automated Verification Systems (AVS) increase the practical

reliability of software by increasing the level of "tested-

ness" achieved.

Limitations. Although advances are being made, program proving through

logical or mathematical theorems is impractical today for programs of

any size. Further, there is still discussion as to whether this mode of

testing is "more correct" than other methods.

An Automated Verification System, however, is a valuable tool.

The role of the AVS is to assure that software testing meets some

criterion of completeness. Comprehensive exercise of a software system

does not guarantee that it is error-free, but practical experience

indicates that thorough exercise will locate a very high proportion of

errors. Hence, testing with an AVS as an approximation to full program

verification, along with proper system design, is a practical and

valuable methodology.

4-2

4.2 TESTING METHODS

The common concept uniting this study is that software veri-

fication is a combination of separate techniques that, when applied

together, form a good base methodology for testing. These techniques

are (1) systematic design methodologies, (2) documentation, (3) static

testing, and (4) dynamic testing and performance measurements.

4.2.1 Systematic Design Methodologies

It is imperative that software design be efficient, logical, and

correct. Bad design increases programming time, programming errors,

execution time, and maintenance frustrations. '.he technique of struc-

tured, modular design has been shown by working experience to be of

great value in reducing these problems.

If a system has been designed and implemented in a structured

fashion (top-down, bottom-up) using structured constructs and dividing

program tasks inco modules, tho design, coding, and testing can be

done in small steps. Further, enhancements or changes to the system can

be done with ease and efficiency.

Most COBOL programs will neea to be changed as the needs of the

user change. It is therefore valuable to design a program so that it

can be modified or maintained. Good planning and structure early in the

design phase plays a large role in this. An automated verification

system should encourage the use of structured programming and increase

the value of the program written in modular form.

4.2.2 Documentation

Because maintenance of COBOL software has become such a large

concern, there is a need for good comprehensive documentation. Person-

nel turnover, constant modification of programs, and high cost of

programing time make it imperative that documentation of the system,

from design through maintenance, be up-to-date and complete.

4-3

Examples af automated documentation include cross-reference

listings, program management systems, and printed reports such as those

produced by DAS and DCD 11, 1or by an automated verification system such

as FAVS and JAVS.

4.2.3 Static Program Analysis

One class of methods for software quality enhancement can be

categorized as "static analysis". These methods scan the source text of

a program for errors in syntax and semantics which can be detected

without running the program on a computer. They provide consistency

checking and documentation about the definition, reference, and communi-

cation of data within the program. They identify programming constructs

which may be legal but risky; and they provide global, organized

information about the identifiers used in the program. Static analysis

expands upon the sort of diagnosis performed by a typical compiler. In

general, static analyzers are most useful in debugging.

4.2.4 Dynamic Program Analysis

Two basic types of dynamic program analysis are: analysis of

statement-level behavior and analysis of execution coverage. Both are

well-known, general-purpose testing aids.

Statement-level Analysis. In statement-level dynamic analysis, all

program statements are instrumented in order to obtain detailed inf or-

mation concerning the program's internal behavior. This technique

produces information that is more detailed and more closely related to

the source program information than such earlier techniques as hardware

monitoring, software monitoring ("snapshots"), and simulation techni-

1DAS and DCD II are products of CGA Computer Associates of Rockville,
Maryland.

_______4-4

ques. Typically, a statement-level preprocessor automatically augments

each source program statement with a "software probe" -- added state-

ments or the invocation of a subroutine which takes measurements while

the program is running. These measurements usually include the values

of selected program variables and the number and types of branches

taken.

When the program terminates, summary reports are printed which

show the ranges of the program's intermediate variable values, which

branches were taken and with what frequency, and which statements in the

program were not executed.

Execution Coverage Analysis. This technique gathers information on the

run-time sequencing of a program and the flow of control among the

programs that make up a programming system. This sequencing information

can be represented at various levels of detail. At the lowest level it

may be a trace of the statements executed by a program when run with a

particular testcase, or the sequence of branches executed by the

program. At a higher level, the actual program flows traversed by the

program may be collected or, at a still higher level, the dynamic

call ng sequence of procedures and subroutines in a programming system

may be monitored.

The technique for implementing execution coverage analysis is the

same as that for statement-level analysis; that is, placing software

probes in the programs at the level at which monitoring information is

to be gathered. The added statements are simply invocations of run-time

auditing procedures which record which procedure and which control

sequence or statement is being executed at the time of monitoring. A

post-processor can then reproduce the dynamic flow of control through a

single program or a group of programs at whatever level is desired.

This information is useful in determining which control flows and

procedures were exercised by which test cases as a guide to what testing

remains to be done.

4-5

4.2.5 Existing Methods And Procedures

We have looked at the types of methodology desirable for a com-

prehensive verification system in the preceding section. Below are the

methods and procedures, along with the companies creating them, which

are now in use for software verification

For the most part, software verification is still a manual

process. Tools and techniques exist, but this area of software engi-

neering is in its infancy. Most of the tools and methodologies have

severe restrictions or require highly-skilled persons to make their

application successful.

Requirements. Requirements state what a computer system should do from

the user's viewpoint. Manual systems exist which aid system decompo-

sition via graphical techniques (SADT from SofTech and AXES from Higher

Order Software) and which label requirements so the labels can be

inserted in the design and code (THREADS from Computer Sciences Corpor-

ation) for tracing requirements to the code.

Specification. At least two languages and tools exist for stating

detailed specifications (Requirements Specification Language - RSL -

from TRW and SPECIAL from SRI). Both provide a rigorous means of

stating specifications which can be used to detect inconsistencies.

Both are expensive to use and are best utilized on small programs only.

HIPO (Hierarchy plus Input-Process-Output) charts are a manual

means of stating software specifications in the context of program

structure.

4-6

Design. There are many design methodologies based upon decomposition,

structure, data relationships, and top-down and bottom-up development.

There are also systems and languages such as Process Design System (PDS

from System Development Corporation) and Process Design Language (PDL).

PDL is a control-structure keyword recognizer.

Functional and Performance Testing. Manual, functional, and performance

testing are assisted by deriving data from HIPO charts, using simu-

lations, obtaining execution-time intermediate-value printout, and

running stress or boundary tests. Boundary, or special value testing,

is a strategy which exercises a program using certain values important

to the control flow of the program. Predicates of logical expressions,

and values which activate one or more conditions in a complex logical

expression, are good candidates for special value tesing. Stress

testing requires that the tester manually identify areas in the program

which are critical to its function. These areas are then subjected to

intensive testing using special values and other methods.

Functional testing treats functional components of a program as

separate programs, with their own input, output, and processing require-

ments. Assertions can be used to determine if the requirements for each

of these functions are being met. Using assertions, the execution-time

behavior of these functions can be checked for:

0 Inconsistencies between the specified and actual contents of

variables

* Time required to execute a function

* Contents of passed parameters upon entering and leaving a

function

0 Changes in a function's behavior when the input values are

systematically changed (as in the case of General Research's

Adaptive Tester).

4-7

• _'-

Structure-based Testing. This testing concept has been very popular fc

providing a measure of testing compietenebs, test data generation, error

location, and finding structural anomalies. There are a number of

automated tools which perform branch testing (RXVP, JAVS, FAVS, SQLAB,

and TAP from GRC, NODAL from TRW, PET from McDonnell Douglas, Test

Coverage Analyzer from Boeing) or execute user-specified sequences of

statements (SADAT from Kernforschungszentrum Karlsruhe GmbH).

Algorithms are being developed to circumvent the impossible goal

of testing all control paths in a program. Some of these techniques are

(1) identifying strongly-connected components of a directed graph

(Tarjan, Ramamoorthy), (2) partitioning the program graph into sub-

schemes which are single-entry/single-exit structures (Sullivan), (3)

identifying strongly-connected subgraphs which are single-entry/multi-

ple-exit, called intervals (Hecht and Ullman), and (4) partitioning the

program graph in terms of its iteration level, called level-i paths

(Miller).

Manual structure-based testing can be assisted by deriving

decision tables (Goodenough and Gerhart) and choosing input data

accordingly.

Structural anomalies such as dead code, potential infinite loops,

and infeasible paths can be determined by some current AVS tools (ATDG

from TRW, SADAT, JAVS).

Consistency Checking. The most common techniques used to determine the

consistency of variables and interfaces are:

0 Adding assertions that define expected use (SQLAB from GRC,

ACES from UC Berkeley)

* Employing static analysis (AMPIC from Logicon, DAVE from

University of Colorado, FACES from UC Berkeley, RXVP, FAVS,

and SQLAB from GRC)

4-8

0 Using data flow analysis to find uninitialized variables and

interface inconsistencies (DAVE, RXVP, SQLAB)

Test Data Generation. A great deal of research energy has been expended

on developing test data generators. So far, these systems (such as

ATTEST at the University of Massachusetts) are still research tools and

have had to back off from original goals. Other tools such as test
harnesses or the Adaptive Tester require input boundaries and invar-

iances between variables to be specified.

For manual test data generation, Howden suggests that input data

be chosen to reflect special values for the program. Ostrand and

Weyuker suggest deriving data in two phases based upon likely errors for

the particular program's function and likely errors for the control

structures used in the program.

Formal Verification. Automated formal verification systems (EFFIGY from

IBM, PROGRAM VERIFIER from USC/ISI, SID from the University of Texas at

Austin, SQLAB from GRC, SELECT from SRI) take user-supplied assertions

(called verification conditions) usually at each branch, and symboli-

cally execute them. The systems attempt to prove each verification

condition as it is symbolically executed. The process involves simpli-

fication of inequalities and, in the case of interactive provers, the

input of occasional rules to aid simplification. Formal verification is

still reserved for small programs. Most of the implemented systems are

based on LISP.

Program Modification. Tools which utilize a database system and save

interface descriptions or other such system-wide information can be

helpful to support program modification and maintenance activities.

Valuable information for these activities are module interaction

reports, detection of global changes, and local updates. Some of the

tools that provide this assistance are the Boeing Support Software, SID,

JAVS, FAVS, and SQLAB.

4-9

I1

- -

Documentation. Automatically-generated reports which provide infor-

mation about program structure, calling hierarchy, local and global

symbol usage, and input and output statement location are very useful

during program development, testing, and maintenance. Most AVS tools

provide some or all of these reporting capabilities.

4.3 SOFTWARE TOOLS

GRC made an extensive study of software tools available today both

for COBOL and for other languages in order to obtain a balanced view of

the techniques and options that are offered.

COBOL is the most popular computer language in use today. There

are many tools available to the COBOL programmer and analyst. The tools

we investigated which were not applicable to COBOL were nevertheless

useful in providing new techniques to consider.

" There are a number of text-editors such as MENTEXT, Univer-

sity of Maryland's editor for the Univac 1100 series, and

DEC SOS. Some of the editors are powerful, others have full-

screen editing capabilities and program reformatting

features.

0 Object-code optimizers such as CAPEX's OPTIMIZER are useful

tools which reduce core requirements, eliminate unused code,

reformat the compiler listing, and permit faster execution

time on IBM S/370 systems.

" Tools which assist in testing and debugging (CAPEX Analyzer/

Detector, FAVS, RXVP80, QUALIFIER) are available for certain

computer systems.

" Additional tools are test data generators (PRO/TEST,DATA-

MACS), instrumentation packages (QUALIFIER, FAVS, JAVS,

PET), and data cross-reference and documentation packages

(DAS, DCDII).

4-10

Many of these tools perform worthwhile functions and serve a

selected market well. However, as we researched the tools, the follow-

ing disadvantages presented themselves:

* Most are oriented to IBM and IBM-compatible hardware, sind

some are operating-system dependent.

" Some require modification of the software for system 'fit'.

* Few of the tools actually support and encourage structured

programming.

" There are many vendors, each offering a tool for a specific

function. Tool command languages differ; obtaining a

comprehensive tool requires procuring many packages, and

learning many operating languages and methods of utili-

zation.

" Program debugging still requires extensive use of core

dumps.

* Most of the software tools which incorporate static analysis

and instrumentation testing have been developed for Fortran

or another scientific language, usually at research

facilities (PACE at TRW, PET at McDonnell Douglas, FAVS and

JAVS at General Research). There are very few COBOL static

analysis or instrumentation tools.

Table 4.1 lists the tools we have examined, and in some cases used, in

the study.

Many of the non-COBOL tools seem to have originated as research

projects and, as a result, perform general program analyses which often

include building a database and a program graph. This broad base of

information allows these tools (with some overhead expense) to be

extended in capability.

4-11

Table 4.1 SOFTWARE TOOLS EXAMINED IN STUDY

TOOL

SYSTEM DEVELOPEF LANGUAGE COMPUTERS CAPABILITIES OF TOOL

ACES UNIV. OF CA. FORTRAN COC 6600 CROSS-REFERENCE
BERKELEY IBM 360 ASSERTION RANGE CHECK

UNIVAC 1108 COOING STANARDS VIOLATIONS
DO LOOP VIOLATION

COBOL COMPTER COBOL IBM, BLRROUGHS REFORMATS DATA AND PROCEOURE DIVISIONS
REFORMATTER ASSISTANCE, INC. CDC, HONEVELL,

STANFORD, CT NGR

DAS CGA COMPUTER COBOL IBM 360 AUTOMATED DATA CROSS -REFERENCING REPORTING
DATA ASSOCIATES UNIVAC '100 COPY TEXT AND LINKAGE SECTION

ADMINISTRATION ROCKVILLE, ND CROSS-REFERENCE REPORTING
SYSTB4

DATAMACS MANG94ENT COBOL I EM 360/370 TEST DATA GENERATOR
AN COMPUTER

SERVICES, INC.
MALVERN, PA

II CGA COMPUTER COBOL IBM, DOS, LAYOUTS OF FILES, RECORDS AND
DATA ASSOCIATES HONEYMELL, GCOS WRKING STORAGE
CORELATION ROCKVILLE, MD UNIVAC, EXECS CROSS REFERENCE LISTING OF FILES
ANO RECORDS AND DATA ITEMS
D(CIMENTATION ENTRY/EXIT POINT HISTORY WITHIN
SYST9M PROCEDURE DIVISION

EASYTRIEVE PANSOPHIC SYSTEMS OS IBM 360/370 INFORMATION RETRIEVAL AMD REPORT

0AK BROOK, IL UNIVAC GENERATION SYST94 TO GENERATE KEYED
SERIES 70 REPORTS FROM INPUT FILES

FACES IN I V. OF CA. FORTRAN CDC 6400 OROSS-REFERENCE

BERKELEY IBM 360 SET/USE VIOLATION

UNIVAC 1108 DO LOOP VIOLATION

COMMON BLOCK VIOLATION

4-12

Table 4.1 (CONTINUED)

TOOL

SYST04 DEVELOPER LANGUAGE COMPUTERS CAPABILITIES OF TOOL

FAVS GENERAL RESEARCH FORTRAN CDC6400 STATIC ANALYSIS

CORPORATION VAX 11/780 BRANCH INSTRUMENTATION
SANTA RARBARA, CA UNIVAC 1100 AUTOMATED PROGRAM ANALYSIS DOCUMENTATION

BRANCH EXECUTION COVERAGE
REACHING SET GENERATION

STRUCTURING FORTRAN INTO WMATRAN

FORMAT K AND A SOF'W ARE COBOL IBM 360/370 AUTOMATED F 4ATTING W ITH DATA AND

PRODUCTS PROCEDURE DIVISION INDENTATION
DALLAS, TX EDIT CAPABILITY

JAYS GENERAL RESEARCH JOVIAL CDC 6400 BRANCH AM) STATEMENT EXECUTION COVERAGE

CORPORATION J3 HIS 6180 BRANCH AND MO LE TRACING
SANTA BARBARA, CA AUTOMATED PROGRAM ANALYSIS DOCUMENTATION

ASSERTION VIOLATIONS

REACHING SET GENERATION

J73AVS GENERAL RESEARCH JOVIAL ITEL AS/6 ONLINE AND BATCH OPERATION

CORPORATION J73 (IBM SYSTEM/370) STATIC AND DATA FLOW ANALYSIS

SANTA BARBARA, CA DEC SYST84 20 7EST HISTORY REPORTING

CDC CYEIR 175 PAni IDENTIFICATION

BRANCH, STATEMENT, AND PATH EXECUTION

COVERAGE

BRANCH AND MODULE TRACING

AUTOMATED PROGRAM ANALYSIS DOCUMENTATION
ASSERTION VIOLATIONS

REACHING SET GENERATION

MENTEXr MENTEL, INC. OS IBM/360/370 TEXT EDITING PROVIDES PROGRAM PREPARATION,

PALO ALTO, CA TESTING AND DOCUMENT PREPARATION SERVICES
FULL SCREEN EDITING CAPABILITIES

OPTIMIZER III CAPEX CORP COBOL IBM 360/370 OPTIMIZES COBOL OBJECT CODE
RE4OVES DEAD CODE, REFOIATS SOURCE CODE

PARAGRARI TRACING AT ABEND

ABEND REPORT ELIMINATES SYS(L)MP

PACE TAI FORTRAN IBM 360 STATE4ENT TYPE STATISTICS

CDC 6400 STAT1MENT INSTRUMENTATION
UNIVAC 1108

PANVALET PANSOPHIC SYSTEMS OS IBM 360/370 BUILDS AND MAINTAINS LIBRARIES OF SOURCE

OAK BROOK, IL PROGRAMS, JCL, DATA. CAN BE USED TO BUILD
JOB STREAMS, TRANSFERS DATA SETS TO
OTHER LIBRARIES-ON-LINE CAPABILITY

4-13

Table 4.1 (CONTINUED)

TOOL
SYST94 DEVELOPER LANGUAGE COMPUTERS CAPABILITIES OF TOOL

PET MCOCN4NELL FORTRAN COC 6600/7600 STATBIENT TYPE STATISTICS

DOUGLAS 1B4 360/370 STATEMENT INS'RUMENTATION

HIS 6000

GE 600

PROTEST SYNEGETICS, CORP. COBOL IBM 360/370 TEST DATA GENERATION

BEDFORD, NA

QUALIFIER COMPUTER FORTRAN STATEMENT TYPE STATISTICS

SOF1 ARE COBOL STAT134ENT INSTRUMENTATION

ANALYSTS JOVIAL DATA INSTRUMENTATION

ASS04BLER

RXVP O GENERAL IFTRAN CDC 6400/7600 AUTOMATED PRO"R*4 ANALYSIS DOCJUMENTATION
RESEARCH FORTRAN I3M 370 BRANCH EXECUTION COVERAGE

CORP. VAX-11/780 CCOIG STANDARDS VIOLATIONS
LOOP VIOLATIONS

ASSERTION VIOLATIONS

SET/USE VIOLATIONS

PARAMETER VIOLATIONS

REACHING SET GENERATION

SQL.AB GENERAL FORTRAN CDC 6400/7600 DO LOOP VIOLATIONS

RESEARCH IFTRAN SET/USE VIOLATIONS

CORP. JOVIAL J3-B ODING STANDARDS VIOLATIONS

PASCAL PARAMETER VIOLATIONS

VPASCAL BRA NCH EXECUTION COVERAGE

AUTOMATED PROGRAM ANALYSIS DOCULMENTATION

SYMBOLIC EXECUTION FOR VERIFICATION

ASSERTION VIOLATIONS

REACHING SET GENERATION

STA AROS COMPUTER FORTRAN CDC CODING STANDARDS VIOLATIONS

AUDITOR SOF1WARE COBOL COMMON BLOCK VIOLATIONS

ANALYSTS COMPASS DO LOOP VIOLATIONS

TSOOL SIGMATICS COBOL IBM 360/370 AUTOMATICALLY GENERATES COBOL
IRVINE, CA PROGRAMS USING STATEENTS STORED

IN LIBRARIES. ALLOIS EDIT CAPABILITY

TSO IBM OS IBM 370 FULL SCREEN CONTEXT EDITING

SUPPORT AND WITH MULTIPLE-SCROLL AI SPLIT SCREEN
STRUCTURED CAPABILITY. KEEPS LIBRARY ACTIVITY

PROGRAMN41NG STATISTICS. MAINTAINS PROG LIBRARIES

FACILITY WIT" A MENU-ORIVEN INTERFACE TO LANGUAGE

CON I LERS.

4-14

L -

Tools created to assist COBOL programmers are generally smaller

software packages which address areas other than program verification.

There are tools to automatically create the COBOL statements which are

continually used in a COBOL program. This alleviates the tedious task of

typing in the wordy areas of a program, which are usually the same in

every COBOL program in that data processing department. When the code

has been created, there are tools to automatically reformat the printed

source code. The COBOL program, with the sections and paragraphs aligned

and indented, is easier to read. There are tools to create flowchart

pictures of the program logic, and tools to create cross-reference

listings of data elements.

COBOL has been the language of business. The emphasis has been

placed upon speed and efficiency of programming. Tools were developed to

assist the programmer in the task of completing programs in a short time

with the least amount of difficulties. Just recently, the need for

quality assurance tools for COBOL programs has been recognized, and

software verification tools to analyze COBOL code are beginning to be

developed.

CAVS will organize the most important functions of several tools

into one comprehensive software development aid; a unique package for

the COBOL language. CAVS is designed to be a portable system requiring

only one, easy-to-learn command language. Table 4.2 illustrates these

advantages.

4-15

TABLE 4.2

CAVS: AN INTEGRATED TOOL

E. -4 NE-4

0 PROGRA1M REFORMATTING X x

0 STATIC ANALYSIS x x

* INSTRUMENTATION x x

0 RUN-TIME ERROR ANALYSES X K

6 AUTO1MATIC DOCUMENTATION

* TEST ASSISTANCE K K

0 STRUCTURED PROGRAMMING K
SUPPORT

4-16

5 A SYSTEM FOR THE AUTOMATED VERIFICATION OF COBOL PROGRAMS

5.1 CAPABILITIES

The intent of Phase 1 was to study the most current techniques of

program validation and testing, review available tools, develop new

ideas and methodology, and design a COBOL AVS. With this information,

coupled with our evaluation of the project scope (with respect to

available resources: time, funding, and manpower), our outline of the

capabilities to be supplied by the COBOL AVS is given in this section.

A more detailed description is the CAVS Functional Description - Phase

1.

The AVS will include six major kinds of software development

tools: (1) static analysis, (2) instrumentation, (3) testing analysis,

(4) coverage assistance, (5) documentation and (6) reformatting. User

interface will be through both batch and interactive terminals. The

individual functions performed in each of these areas are described in

Table 5.1.

A coded program is first submitted to the COBOL language compiler,

which performs its syntactical functions. If errors occur, the program-

mer can make the corrections and resubmit the program to the compiler.

The next phase is program verification using CAVS, illustrated in Fig.

5.1. Any of the Static Analysis, Documentation, and Testing Analysis

functions, or Instrumentation, can be chosen by the programmer. Errors

revealed by CAVS can be corrected at each step and the process can

continue until the software is ready for production testing. The user

retains control of the amount of testing coverage to be performed,

choosing from a selection of CAVS functions. The figure illustrates the

usual sequence of events to be followed in using CAVS.

TABLE 5.1.

SUMMARY OF CAVS FUNCTIONS

Functional Area Coimmand Description Default

Automlc DOCUMENT Macro Command, Requests Default set of Documentation and Cross- NO

Reference Reports.'

LIST Lists COBOL source, formats and Indents data and procedure Yes

division.

CALLS Cross references calling and called programs. Yes

FILES Cross references program and file Interactio. Yes

COPYTEXT Cross references program and copy text interaction. Shows Yes

where copy texts are used within a system.

LINKAGE Cross references program vs. linkage section contents. Yes

IDENT Cross references all identifiers in the system by program. No
Shows where defined, set, used.

DATALO Cross reference of identifiers by their record position NO

and program. Shows fields defined. set, used, even where
Identifier-nemes are different.

'WRcommnds are underlined. These com ands cause all default commands for that functional area to be
executed without having to request them eplicitly.

5-2

TABLE 5.1. (CONTINUED)

Functional Area Commvand Description Defaul t

Automatic PROFILE Describe program interfaces, sizes, verb and I/O usage. YesIDOC Lifentat Ion

INDEX Index of reports generated and which programs are referenced Yes
in those reports.

$Static Analysis ANALYZE Macro conmand, requests default set of static analysis reports. No

STATIC General source analysis within a module, or within each module. Yes

CALLS Analyzes interface between calling and cal led modules. Examines Yes
linkage sections, variables used, pictures of those variables.

MOVGCORR MOVE CORRESPONDING analysis. Checks corresponding data names for Yes

REACHSET Lists source statements on path between two statements in a No
prog-am.

5-3

TABLE 5.1. (CONTINUED)

Functional Area Comnand Description Defaul t

Instrumentation PROBE Inserts diagnostic source statements which monitor execution No

control flow and time. Output from an Instrumented program goes

to an execution trace file.

Test Analysis TEST Macro command, requests default test analysis reports of a No

and Assistance specified execution trace file.

COVERSINGL Shows progran source statements used during execution of single Yes

test run.

COVERM ULTI Snows cumu lative program source statements used during multiple

test run.

EXTIME Reports execution times of each invoked program unit. Yes

DETILTIME Detailed timing analysis of program behavior. Reports total No

times by paragraph and section.

NOTHIT Shows p-ogram source, flags statements not hit by test case(s). Yes

SLI4SINGL Sumearize single test case, showing numbers of paths not hit, Yes

percentages, execution summary.

SIMALL Sunarize all test cases. No

5-4

I .. ., ".. . I . ..m,wi, ,,

one or more compilable units of Cobol
SOURCEsource code is input for processing

and analysis.

CANS generates a directed graph of the
SOURCE TEXT control structure. All syntax, semantics,
ANALYSIS, and structural information is stored on
STRUCTURAL a database. Additional or changed source code

ANALYSIScauses an existing database to be updated.

ANALYSIS Possible errors, warnings, and dangerous
DATA FLOW programming practices are reported.

and test history

are rportd. FReports
for program

COVERAGE PROGRAM ANALYSIS documentation, debugging,
ASSISTANCE RPTIGmaintenance, testing and

retesting are produced.

CORRECT Software probes are automatically inserted
SOURCE jINSTRUMENTATION for dynamic analysis of execution coverage,

counts tracing, and timing.

YES rTEST EXECUTION, 1 Pormeeuinpoue
DYNAM4IC DATA Prilor analysisn byodcs

ERRORS NOCOLLECTION fl o nlssb AS

FOUND
EXCTO Execution coverage, counts, traces,

ANALYSIS and execution timing are reported
by testcase and by a set of testcases.

NO TST GALS Have a specified percentage of

ACHIEVED branches been executed by
? cumulative testing?

Fig. 5.1. overview of CAVS

5-5

Generally, static analyses are performed first. Reports are

generated showing the results of those functions (outlined in Table

5.1). Once errors have been eliminated and the user is satisfied, the

program can undergo dynamic testing analysis. Software probes are

automatically inserted for dynamic analysis of execution coverage, for

tracing execution sequences, for counting execution of segments, An~d for

timing execution of segments. Program execution will produce a data

collection trace file for analysis by CAVS, and listings are generated

displaying the information gathered.

5.2 DESIGN

This section overviews the design particulars of GAYS. For a more

comprehensive description, refer to the CAVS System/Subsystem Speci-

fication.

Once the needs of the user have been determined and the cap-

abilities of the software package identified, the most important task is

to create a design of the system. The design must demonstrate that the

tool (1) will operate correctly and satisfy the user's requirements, (2)

is written in language which is familiar and portable, (3) will execute

with economic efficiency and within reasonable execution times, and (4)

by -its design, is easy to modify to keep up with change and is adaptable

for enhancement.

The system's primary input is a collection of COBOL source text,

which is recognized, parsed, and stored on the data base (composed of

multilinked table structures). in this sense, it performs some of the

functions of a compiler, but for the most part its purpose and operation

are different. A compilable program is assumed, and therefore no syntax

error checking is done. Unlike a compiler, the CAVS stores the source

code in various representations (such as blank-delimited text form,

statement token strings, and graphical representations). Attributes of

the program (individual statements, parameters, symbols, etc.), will be

5-6

saved in the data base and reconstructed in modified forms such as with

testing coverage probes. The stored attributes are examined on a

program-by-program basis or across program boundaries in order to

evaluate the semantic consistency of the code or to generate summary and
documentation information about the program.

THE DATA BASE

The CAVS data base comprises the collection of program data in a

set of tables. The system is designed to handle large programs con-

sisting of many subroutines, with the potential for run-to-run retention

of data tables on auxiliary storage. The large data base is maintained

in random access files called libraries, with each library holding a

collection of tables. In core the working storage consists of allocated

blocks of storage which contain active module data tables. Data

transfers between the libraries and the working storage area, and

between the working storage and analysis program, are controlled by the

Library Manager system.

TABLE STRUCTURES

The tables that contain module information have a generalized

structure. Access to table information is made through a section of the

library manager called the access interface.

TOKENS

The functions of CAVS require manipulation of the COBOL source

text and in many cases involve accessing specific elements of text such

as variable names, keywords, operators, etc. Therefore CAVS stores text

on its data base by breaking the text into its smallest meaningful

elements (tokens).

COMMAND

The CAVS program is divided into a group of functional segments.

Similar or sequential activities are combined in a segment and the

5-7

activities and options are controlled by a set of segment commands. The

first word of each comand signifies which segment receives the command.

Each segment contains a command recognition routine which processes each

command sent to the segment to determine which options and activities

are being requested.

STORAGE

The Nucleus or data base makes up the core-resident root of the

system although to minimize storage requirements, some nucleus routines

will be loaded into secondary storage until needed. Each of the

function segments reside in secondary storage until called and loaded by

the storage controller.

FUNCTIONAL SEGMENTS

The following is a brief description of each functional segmentz

Command Decoding and Control: Process user input commands, output

interactive response, and successively return each command to the

overlay controller.

Initialization and Wrapup: Upon run initialization, open files,

initiate execution of the storage manager, and set various global

data; upon run termination, close files and (for batch mode)

produce report index.

COBOL Source Text Analysis: Read COBOL 68/74 source and perform

lexical scan, token recognition, symbol classification, and

structural pointer construction.

Structural Analysis.: Build program graph, store branches, and

compute single-entry/single-exit reduction history used in data

flow analysis.

Supplementary TableBuilding: Build tables needed for module

dependence reporting and cross references.

Program Analysis Reporting: Produce selected reports at user

command.

5-8

Instrumentation: Insert probes at program unit entries, exits,

branches (depending upon type of instrumentation selected); define

new testcase or end of all testcases.

Structural Testing Analysis: Analyze run-time execution trace

file, produce coverage and trace reports, and update test history

table.

Execution Timing Analysis: Analyze run-time execution trace and

produce timing report.

Print Services: Print the contents of specified database tables.

DESIGN METHODOLOGY

We entertained the idea of a new system design for the COBU. AVS

because outwardly COBOL appears different from the languages fur which

we have previously developed an AVS. Looking over the structure of the

language as it is translated into the assembler level, we decided a new

design would be unnecessarily expensive in time and effort. A more

effective plan would be to translate the FORTRAN AVS code into logically

equivalent COBOL, and *then apply the necessary modifications so it

processes COBOL and addresses the testing needs of COBOL programs. The

available resources would be better utilized in improving our design,

testing and debugging the AVS, and implementing more features.

After translation of the data base routines from Fortran to COBOL,

the necessary Identification, Environment, and Data Division sections

would be added. Most of the auxiliary, validation, and testing routines

would be redesigned to operate on COBOL code.

In order to create a COBOL AVS which is portable, CAVS will be

written in a subset of ANSI-COBOL 1974 which is compilable on the

Univac, Honeywell, and DEC computers (Appendix B). Because these three

machines have different system architectures, there are statements,

5-9

specifications and formats unique to each machine which cannot be

standardized. A variable front-end routine for each machine type will be

created to deal with these few differences and allow the main body of

CAVS to be identical for each system.

Figure 5.2 shows an overview of CAVS's design. It is similar to

FAVS in that it utilizes a command translator, language recognizer,

structure recognizer, and trace file decoder. COBOL tables will be used

instead of FORTRAN arrays to store all data. The data base analysis

components will be completely redesigned to analyze COBOL structures and

test for COBOL errors.

5.3 OPERATION

CAVS is designed with the user in mind. The design of the user

interface to the software tool is as important as the system/ subsystem

design. Often, a valuable software system sits on the shelf because the

user cannot understand its operation, because the command language is

too wordy, difficult or ambiguous, and because the user's guide is

unreadable.

CAVS will operate in both batch and interactive modes. This

increases portability of the system and allows each user to determine

which is most convenient for his needs. The following examples give a

brief description of the system's operation in the batch and interactive

modes. For a more detailed description of the operational features of

CAVS, refer to the Functional Description.

5-10

USER SOURCE TRACE INPT
CO 4ADS PROGRAMS FILES IPT

r 1 r 1DATA BASE
INTERFACE DATA FLOW COBOL STRUCTURE TRACE FI LE CONSTRUCTION
ANALYZER [NAYZE RECOGNIZER RECOGNIZER DECODING CONPONENTS

EXISTING
PROJECT
IBRARY

DATA BASE
D ATA BASE NUCLUS VRTUA

NTERFACE COMPONENTS

TEST RPORT [NST ENTATlO] PROGRAM STATIC COVERAGE DAASES
GENERAION DOCUMENTATION ANLYIS ASSISTANCE COMPONENTS

BACHINTER CTIVE (FECED CTREORS RE PORTS IOR

Fig. 5.2. CAVS Design Overview

5-11

BATCH OPERATION

An example of a batch runstream to perform Static Analysis,

Documentation, and Testing Assistance for modules called MAINPROGRAM,

SUBI, and SUB2 stored in file " DMA*PAYROLL. is as follows:

@RUN GRCRUN,ACCTNO/passwd,10,100,5

@ASG, A DMA*PAYROLL.

@ASG,A CAVS*VERSION8O.

@ASG,A DMA*TEMPFILE.

@ASG,A DMA*PAYROLL. OUTPUT1

@ASG,A CAVS*ECL.

@ADD CAVS*ECL.

OPEN INPUT.

FOR MODULES = MAINPROG SUBI SUB2

ANALYZE STATIC CALLS

DOCUMENT LIST FILES IDENT

TEST UNIT TIMINGS COVERAGE

@EOF

@FIN

INTERACTIVE OPERATION

CAVS interactive capability allows the user to create a job for

execution, using interactive techniques, when use of the batch facility

is not convenient. With the interactive system, the user responds to

questions on a screen menu. The user will be able to create a CAVS job

and execute the job while at the terminal.

After sign-on, a main menu appears and the user enters the type of

job processing he wishes to perform. Another menu, depending upon the

response, appears automatically. The user can request CAVS analysis,

browsing of previous CAVS reports, or printing of previous CAVS reports

stored on the library. If CAVS analysis is requested, the appropriate

menu appears and the programmer inputs the exact tailored functions

5-12

desired. The user can, at any time, view the job runstream, or can

request "help" information.

Before submitting jobs for execution, the programmer can direct

the output to the terminal screen or the system line-printer.

Figure 5.3 illustrates some of the options available to CAVS batch

and interactive users. Refer to the CAVS Functional Description for a

more detailed explanation of the interactive processing capabilities.

5-13

SBATCH

CARD CENTER

DECK

REPORTS

(1) CAVS BATCH PROCESSING

CREATE A CREATE A JOB VIWRDEC
BATCH JOB AND EXECUTE IT RESULTS ON REPORTS TO

INTERACTIVELY THE TERMINAL SYSTEM PRINTERSCREEN

DON'T PRINT
RESULTS, BUT
STORE THE FILESJ FOR FUTURE

IREFERENCE I

VIEW PREVIOUS
CAVS ANALYSIS JOB

P RINT PREVIOUS ON TERMINAL SCREEN

CAVS ANALYSIS JOB
ON SYSTEM PRINTER

(2) CAVS INTERACTIVE PROCESSING

Figure 5.3. CAVS User Options

5-14

6 ENHANCEMENTS BEYOND CURRENT STATEMENT OF WORK

6.1 CONTINUING NEEDS OF CAVS USERS

We believe that every organization that builds or maintains

software must be concerned with the need to improve productivity in

software development and maintenance. R.ADC and DMA recognize this need.

Analy theute DMA softain devlope enrnets.al Thecolpofate

anastud codute byA Plft annin Syslomete nerton al Inorporate

study was to develop a plan for establishing a "Modern Programming

Environment" in each DMA installation.

Part of that plan recognized the importance of tools such as CAVS,

and proposed methods of acquiring and installing additional tools, and

supporting their effective use. The proposed enhancements i~i this

chapter will make a significant contribution to the Modern Programming

Environment at DMA and help to improve the management and productivity

of the programing staff.

Table 6.1 summarizes the enhancements proposed for CAVS.

6.2 SUMMARY OF PROPOSED ENHANCEMENTS

Status Displays

The productivity of systems professionals and their management

must be increased. One approach is to make more information about

programs available to the staff. There are many tools that provide

information, so much that programmers can be inundated with data. The

problem is not so much one of not having information as one of not being

able to f ind it. CAVS should be supplemented with a comprehensive

on-line, interactive system which enables programmers to search,

examine, and logically manipulate information about their software

development activities. Managers should have access to status displays

and reports revealing who uses GAVS and to what extent.

6-1

8 .0

LB
8 L In

U) L
L L1

a) n- 4-
4- 4-a

a u c

4- m
1

n4

0) 4- r-
a L . 3 fo

r-4 Q6 c"- 4-0)L

c/ L .a L
L. L u

In> m 0. t0 4_0 a L
4) a Wa Af L

a~ a L - LC4
- 0 L0 L '-

L~ 0 U. 0n *n 0 ia

al LUU
LE -0 00 LO 8-- C

L .2 -n L LM n. 0 . .0 _ - L

00 4- E- In C +- tL Cto0 0 lo- =- C 4- U
L. u* L.00o L 8L

In~. 4- In 4- 0
> 0 4- L ~ V LUVa L

aL L 2'8 ~~ V)'a4-L8
L4- a >. cl l

4- c- 0 8 3- z. a +-

0 2s cL R L
L 10 z 'AL

ou 00 L c ~
c- 0a Q6- . - m ~ S,4

to a - C- - 'o U x
Ln +4- 0 %on IL U

0) Om 4-. 40 uo . lo 4-
(- ~ a +-- ~ a 4-In 0 0 L2 L ua Lv) LP a 0. CL L oc C

C 0n >0 CL U to) a0 0o 00 WOn L - L
4- MaE N 0 ~0
0. 4. M In I- 0 Ca to .~

f z aC I10) -m .001- In In-u~ N A: 02 >a tCL N331 L2 0. L L CAt
cfn A (Af Wa on ujt w In l v C I

L I
+- U

in C) 3
4- 4- 1 5 0lo L U

4- .0L + -a
+I - ILL

(4 W U C
4

L4-C
-

>
CC. (0 La 54 1 -

0~ c n 8 ~ v) .20 to- -In U a
OLa C 'ID in Lnni

01
C

a CL
U C- t

C0 4 Et
= L C

6-2

in L

10 0

L0 4- ~
C - * 0 0 4- in

in > >1
40 0) 0 CO 0)4

(a4- - 00 ID 0
4-0 -4 - vn c

t-4
E L o L~ 'D 4- 0

S0 3 . CL 0) c 0 L
0 CL- to a)n

- i 0 0 V)
i - ~ > 0 2

in4 L L 90 L. 0+- * L
0CD V'. IDE 4 CU - 0
.0 0 r Q inc 0 3:

t0 L. r_ 004- an 4 i

o: in 0 L >z

43 (- to 00.

Vi; Oc +In ID

a ~ L

EC 0 0
L L - CL +4 or 4- +- 00 '4-
0 0 - o F: 'T' a) n LL

0 a.. " L 0 4-- - 0 Ic

0- a CL 00 in '4 C0)

-1 i 0 f ~ 2 n - I
(D E 0~ 00 *- 4- f 4,1-'- 0 * - L- V EU0 -

3. . b +Ln 4-0)o 0
0 >.L in +- L Et0 >. U N

In WD z ' L

0 (D E0) I C 4 Q

L 0) 0> Irl cr. * L to

L4 C.0 C0 UY 4- 0.V) 4
-4- OW -04 c. 03 00. L ._

03 :t 0 cL 0 > 00 +- U OD
U it U'4 C0 LC (D. 9 ;

13 4- N -)- 06 On 4) (D in 0
'n -0A '0' 'DL N 4- 0cL

U 0 +- in L 0 - - 0) 0) Uin .~0 ino) . Ii 00 4-0
0D x- M L - L CL X C in L L X(L

0 U 0 < 0o J 3 LL < << II0- WL CL a

0 wL z o-iC)0 NO0
-J u U- z

0 - w- - IX ~ U)0 -1

L C Z <u n1
0W - -j V) < U)<

i C:

00

0 0 CE0

o 4-

4- 00 -. L -j)

00 4- -) z-i
CO 4-0 ID 0>

L- L 3-

6-3

Tutorial

Training of new employees is expensive and in times of high

turnover it can be almost impossible. Many installations recruit people

from user departments for positions in the systems development area.

While this process provides employees with firsthand knowledge of user

departments, it also means more training is required to produce a good

systems professional. As part of the comprehensive on-line system, we

propose that CAVS be equipped with a tutorial component which would

guide novice users and supplement the knowledge of experienced users.

Automatic Restructuring and Charting

Preserving an investment in old software while introducing modern

programming techniques is very difficult. As more experienced program-

mers are promoted or leave an installation, the number of people who

understand and can quickly fix old, GOTO-ridden programs declines.

Automatic restructuring of old programs would enable CAVS users to

improve the readability and maintainability of their programs, while

preserving the integrity of their systems. This process could be

supplemented by automatic charting programs to produce program structure

charts and visual tables of contents (VTOCs). These VTOCs document the

overall control structure of GOTO-free programs. These tools could

red-uce the cost of maintaining, improving, and documenting COBOL

systems.

Conversion Support

Upgrading an installation's computer or operating system is

frequently a painful task. While improvements in machine efficiency or

operating system capabilities are the eventual results, converting old

programs is time-consuming and error-prone. Economic benefits to be

gained from using a data base management system or a more modern

compiler must be weighed against the cost of conversion. By enabling

CAVS to recognize old dialects of COBOL, Government installations could

use CAVS documentation, restructuring, and static analysis features to

upgrade large volumes of old, non-standard COBOL programs.

6-4

COBOL Assertions

Assertions are statements which are added either manually or

automatically to monitor the execution-time behavior of a program.

Their most valuable function is the ability to state what the expected

behavior of a program should be, and then issue diagnostics when an

error condition is detected. They are distinct from regular logical and

input-output statements in that their operation can be easily switched

on or off.

CAVS assertions would be coded with COBOL-like statements, and

translated by CAVS into valid COBOL.

WWMCCS COBOL

CAVS can be modified to recognize other specialized diale. ')f

COBOL such as WWMCCS. WWMCCS is implemented on Honeywell compuLers,

with an operating system written in a language very much like COBOL. A

WWMCCS implementation of CAVS would be able to analyze the WWMCCS

operating system and applications that run on it. Automated tools for

testing and increasing the reliability of this system should be de-

veloped.

Interaction of CAVS with FAVS

FAVS, the FORTRAN Automated Verification System already installed

at RADC and DMA, performs most of the functions for FORTRAN and DMATRAN

programs that CAVS will do for COBOL. By enabling CAVS and FAVS to talk

to each other, systems which use both of these languages could be

verified in 'a more comprehensive and thorough manner.

6.3 CHARACTERISTICS OF PROPOSED ENHANCEMENTS

These enhancements are grouped by functional areas similar to the

existing functions of CAVS. A summary of the enhancements is shown in

Table 6.1. All features would be implemented for on-line users; control

would be by means of menus. For automatic restructuring of large

6-5

programs, and for program graph analysis, the job control language could

be produced on-line, but actual execution should take place in batch

mode. Users could print text from the tutorial, but on-line access to

the same information would result in great savings in programmer time.

Allowing users to examine CAVS output at the terminal and print only

what was necessary would also reduce the volume of paper produced by

CAVS.

6.3.1 Demand Processing and On-line Support

CAVS on-line users will be able to build batch jobs or to execute

all CAYS functions on-line, in "demand mode." While this approach pro-

vides users with access to the most commonly needed programming inf or-

mation, the problem of how to help the programmer use and manage that

information should be addressed. CAVS can be made intelligent enough

to:

0 Track the progress of modules through the system

0 Report their status to users and management

* Suggest courses of action

* Explain what happens when a particular course is selected

0 Search and manipulate CAVS report output in ways tailored to

a specific user-defined problem.

All of these functions should be available to on-line users.

HISTORY is a proposed system-wide data logging function. It would

record:

* When modules were added to a library

a How many versions of a module had been added

0 If and when a module was analyzed, documented, instrumented,

or tested

6-6

0 Which users and projects were actually using CAVS, and to

what degree.

Status displays for managers and programmers would reveal the

current state of program development for an entire project or for a

single program. How the tool was actually used could then be more

accurately determined. CAVS should collect enough data about its own

behavior to guide managers and programmers in the most effective use of

the tool. Figure 6.1 illustrates a proposed project library overview

display, showing, in CAVS terms, the number of modules at each stage of

program development. Their pcrcentage of the total modules in the

project library would als b, :hown. Information about how and when

CAVS had processed a sinigli nd.K would be shown on a display like

Figure 6.2.

PROGRAMS IN LIBRARY 20 100

OTHER MODULES IN LIBRARY 6 NIA

PROGRAMS WITH ANALYSIS COMPLETED 10 so

PROGRAMS WITH NO ANALYSIS ERRORS 8 40

PROGRAMS WITH DOCUMENTATION GENERATED 10 so

PROGRAMS WITH PROBES INSERTED 6 30

PROGRAMS TESTED AND ANALYZED 3 15

PROGRAMS CHANGED SINCE LAST REPORTS PRINTED I 86

Figure 6.1. Project Library uverviw Wisplay

b-i

B,S MODULE STATUS PG

MODULE: DMACOSOL TYPE: COBOL DATE TIME COUNT COMMENT

ADDED TO LIBRARY 02MAR8O 12:20 3000 LINES

DOCUMENTATION CREATED 02MARS0 12:28

PROGRAM ANALYSIS COMPLETED 02MARS0 12:40

SEVERE ANALYSIS ERRORS 02MARS0 12:40 0 ERRORS

WARNING ANALYSIS ERRORS 02MARS0 12:40 3 WARNINGS

PROBES INSERTED 03MARS0 14:21 550 BRANCHES

CUMUL. % PATHS TESTED 0 PERCENT

Figure 6.2. Status Display for One Module

Suggestions and Guidance

CAVS could use its HISTORY information to suggest courses of

action to on-line users. On-line users are already guided through a

work cycle. Program development also follows a predictable cycle of

coding, analyzing, testing, and documentation. CAVS could look at a

module's status and propose what actions should be done next. In Fig.

6.3, for example, CAVS has been asked to suggest actions for GRSCALC, a

module which is already the object of a status display. After checking

HISTORY for GRSCALC and for the project library, CAVS suggests reviewing

errors found in GRSCALC. In this example, alternatives based on what is

known about other modules (in the project library) are also presented.

6-8

t

*-PRIORITY--..SUGG ESTION °

1 BROWSE SEVERE ANALYSIS ERRORS: GRSCALC, DISCALC

2 BROWSE WARNING ANALYSIS ERRORS: GRSCALC

3 FLAG WARNINGS AS OK: GRSCALC, RATELKUP

4 BROWSE STATUS OF NEW MODULES: DISCALC

5 PUT PROBES IN: RATELKUP

..

TO RETURN TO PREVIOUS DISPLAY, HIT RETURN.
TO ACCEPT SUGGESTION, ENTER PRIORITY NUMBER, HIT RETURN.

COMMAND -- a 1 (RETURN)

Figure 6.3. CAVS Suggestion Capability

SUGGEST and HISTORY would relieve experienced programmers of much

of the bookkeeping done during development and maintenance. Inexper-

ienced programmers and new CAVS users could become productive more

quickly. If the suggestions were accepted, CAVS could begin executing

the function immediately or generate a job to execute the function in

batch mode.

CAVS programmers must now do at least three things during the

course of solving a probleD: determine whot reports contain data they

need, produce the reports, and extract the necessary information.

SUGGEST and TUTORIAL capabilities can help in the first two activities.

Adding special logic capabilities to CAVS would make the last task much

easier. We propose equipping CAVS with programs which scan its own data

6-9

base and recognize commonly-used COBOL constructs and user-created data

items. This would not be a text searching function, something that

could be done with a text editor, but a search based on the logical

properties of COBOL programs. The LOGIC processor could then:

* Extract data sets of data names, file information, and COBOL

verbs.

0 Sort and merge extracted data sets in ways specified by the

programmer.

0 Create new data sets which represent the logical inter-

section of two or more CAVS reports. For example, a list of

all CALLs and a list of identifiers could be merged to

produce a list of all CALLs which reference those identi-

fiers.

0 Save and delete the data sets created by the LOGIC pro-

cessor.

6.3.2 Automatic Restructuring

GRC's Fortran Automatic Verification System contains a function

for automatically restructuring FORTRAN programs to eliminate GOTOs.

There are several problems with the restructuring procedure as it now

exists:

Automatic restructuring without additional human input

produces an equally bad program without GOTOs.

0 Restructuring a program causes documentation of the old

program's internal logic to become obsolete.

* Restructuring large programs is time-consuming and ex-

pensive.

CAVS should provide restructuring for COBOL programs, but (based

on the experience of users at DMA and GRC) we feel an improved, cost-

6-10

effective restructuring module can be built. It should provide these

services:

0 Automatic analysis of existing program structure.

* Easy-to-read program graph reports. These would show how to

break a large program into discrete, easily understood (by

people) and easily structured (by computer) chunks.

0 Error and diagnostic reports. Any COBOL constructs that

render the program unstructurable would be reported.

0 Automatic restructuring of COBOL source programs. CAVS

would be able to restructure any COBOL dialect it could

recognize.

* Automatic chart generation. Documentation (VTOCs :-.,/or

flowcharts) for newly structured programs could be generated

mechanically. Cost of documenting these new versions of

well-tested programs would be reduced.

6.3.3 Automatic Documentation

CAVS is designed to be portable across computer models and

operating systems. Its automatic documentation modules Loacentrate on

the portable portions of COBOL programs. But information about non-

portable language constructs, file structures, and program interfaces

can also be important. During conversion from one computer to another

or one operating system to another, knowledge of these non-portable

system characteristics is vital. Conversions can be simplified and

expedited when this information is extracted and presented automa-

tically.

INTERFACE is a proposed report that summarizes the interface

characteristics of a COBOL program. It would identify the following, on

one page if possible:

* File name and external file code

6-II

0 File organization and format

* CALLs to other modules

0 Information received from and passed to the operating system

0 Linkage section variables and their attributes

0 Presence or absence of system-dependent constructs, e.g.,

DECLARATIVES, FILE-STATUS, etc.

INTERFACE would conveniently organize and present how COBOL programs

communicate with the host operating system and with each other.

LAYOUT is a function requested by the staff at DMA. This option

would create record layouts from COBOL file descriptions (FDs) and from

Working Storage areas. It could be extremely useful when working with

utilities which reference data items by location instead of variable-

name. LAYOUT would determine the size and physical location of each

field in a record from the field's COBOL picture. For each file and

related Working Storage area, LAYOUT would show:

0 File name and external code

* File organization and format

0 Field name position

0 Field characteristics

0 Any overlapping or redefined identifiers

* Where used in the system (optional)

SPECIAL is a proposed function which could audit programs for

non-portable and non-standard language constructs. Unlike the FIPS

flagger, which is available for. some compilers, SPECIAL could be

tailored to an installation's needs. While INTERFACE provides a

high-level summary of interface characteristics, SPECIAL would flag

these items in the source. SPECIAL would be of great value in moni-

toring the work of contractors and new programmers who do not adhere to

or do not know a shop's coding standards.

6-12

Upgrading of programs written in pre-1968 COBOL dialects could be

simplified through the use of CAVS. Program profiles, the proposed

INTERFACE and SPECIAL reports, and the restructuring function could be

used to upgrade and convert old programs.

6.3.4 Static Analysis

Research on methods of static analysis will continue throughout

the CAVS development. Infinite loops are a common programming problem;

they waste computer time and are a common error of novice programmers.

CAVS now has some capabilities for discovering graphical loops; addi-

tional research may enable CAVS to detect more complex, logically

infinite loops.

Neither the Univac 1100/80 series nor the Honeywell 60OU series

provides virtual memory. In order to execute large COBOL programs, they

use a segmentation feature to break programs up and execute them in

pieces to reduce the amount of memory required. SEGMENT is a proposed

CAVS feature which would analyze a program's control structure and

identify sections that are good candidates for segmentation. This

feature could be used in conjunction with the Navy's segmentation tool

to improve the performance of large programs on machines without virtual

memory.

6.3.5 COBOL Assertions

Assertions are logical expressions which may be either true or

false, but are expected to be true. If these expressions are not true,

the condition is known as an assertion violation. Assertions are used

primarily for two purposes: to state formally what a program should do

(or not do), and to monitor the program's behavior during execution.

When used consistently and efficiently, assertions can simplify the

testing and debugging of programs.

6-13

CAVS users should have the option to put assertions in their

source code, and then have CAVS translate them into valid COBOL. CAVS

would support logical assertions (which evaluate a user-defined logical

expression and take action when that expression is false) and also

support input-output assertions (which monitor values read into, written

from, or passed to a program).

Most computer manufacturers provide some assertion-like capabil-

ities with their COBOLs. But these statements are part of the source

program and are not easily removed. CAVS assertions, on the other hand,

may be switched on or off at compile time.

CAVS users would be provided with a compile procedure which first

passes their source to the CAVS assertion processor. At that time, they

will have the option to:

0 Switch the assertions on, by directing CAVS to translate

them into valid COBOL

* Switch the assertions off, and have CAVS mark them as

comments so that they remain in the source code as documen-

tation

0 Switch the assertions off, and remove them from the source

code

6.3.6 WWMCCS COBOL

The Government has invested over nine years and significant

resources in the WWMCCS* operating system and resident software. A

special dialect of COBOL was also maintained for WWMCCS, which is imple-

mented on Honeywell 6000 series computers. CAVS should be modified to

provide WWMCCS programmers with tools to analyze, document, and test

their programs more effectively. Specifically CAVS would be modified

to:

World Wide Military Command and Control System

6-14

* Run on WWMCCS architecture and operating systems

* Recognize WWMCCS COBOL

* Produce all CAVS reports and displays in formats suitable

for WWMCCS hardware

6.3.7 CAVS and FAVS Compatibility

DMAAC and DMAHTC already have a GRC-developed tool for FORTRAN

users, FAVS. FAVS and CAVS will perform many of the same functions, but

each tool is restricted to dialects of one language. Each tool provides

a permanent data base which contains descriptions of source text and

testing history. (In CAVS terminology, this is the project library; in

FAVS terminology, it is a restart file.) GRC will implement CAVS, and

modify FAVS, so that:

* FAVS can process and update a CAVS project library.

* CAVS can process and update a FAVS restart file.

FAVS can process trace files written by instrumented COBOL

programs.

0 CAVS can process trace files written by instrumented FORTRAN

programs.

CAVS and FAVS can then be used to analyze, test, and document

programs which contain both COBOL and FORTRAN modules.

A system containing both COBOL and FORTRAN modules would be

verified as follows:

* CAVS would statically analyze, document, instrument, and

reformat COBOL modules and add information about them to a

project library (restart file).

* FAVS would statically analyze, document, instrument, and

restructure FORTRAN modules and add information about them

to a restart file (project library).

6-15

* Either CAVS or FAVS would be used to produce test coverage

reports resulting from execution of instrumented modules.

0 Either CAVS or FAVS would be used to update the testing

history information on the project library (restart file).

0 Either CAVS or FAVS would be used to obtain source text

listings and system-wide documentation regarding entry

points, externals, global variables, and file usage.

No significant changes are required to the CAVS Functional

Description or CAVS System/Subsystem Specification to accommodate this

compatibility. On the other hand, FAVS will require significant

additional effort in order to upgrade the FAVS restart file, instrumen-

tation processing, and test coverage analysis. In order to insure trace

file compatibility between CAVS and FAVS, only full word integer data

will be written to trace files by instrumented routines. Since the CAVS

project library and FAVS restart file must contain at least some

character data in addition to full word integer data, it may be more

difficult to achieve compatibility in this area. If character data

written by a COBOL program cannot be read by a FORTRAN program (or vice

versa), it may be necessary to use both COBOL or both FORTRAN routines

to read and write the project library in CAVS and the restart file in

FAVS.

The following features will be added or enhanced in FAVS.

0 Parameter checking for calls to COBOL routines.

* Relative organization for the FAVS restart file (it cur-

rently is a sequential file in FAVS and a random file in

CAVS).

0 Updating in place of a restart file or creation of a new

copy (similar to CAVS).

6-16

6kl

* Inclusion of source text, structural information, and

testing history on the restart file (for compatibility with

CAVS).

0 More flexible and efficient instrumentation of FORTRAN

source (as well as compatibility with COBOL trace files).

0 Improved test coverage and test history reports (oriented to

the user's original source code as in CAVS).

0 A menu-driven interactive interface for compatibility with

CAVS use.

Parameter checking for calls to FORTRAN routines will be added to CAVS.

6

i 6-17

7 BIBLIOGRAPHY

Alberts, D., "The Economics of Software Quality Assurance", Proceedings

of COMPSAC 77, Computer Software and Applications Conference, November

1977, p. 222.

Andrews, D. M., Benson, J. P., Advanced Software Quality Assurance,

Software Quality Laboratory User's Manual, General Research Corporation,

CR-4-770, May 1978.

Benson, J. P., et. al., Software Verification: A State-of-the-Art

Report, GRC, CR-1-638, March 1978.

Boyer, R. S., Elspas, B., Levitt, K. N., Select--A System for 'I,,"ring

and Debugging Programs by Symbolic Execution," Submitted to the 1975

International Conference on Reliable Software, April 1975.

Brooks, N. B., Gannon, C., JAVS, Jovial Automated Verification System,

Vol. 3, General Research Corporation, CR-1-722, December 1976.

Brooks, N. B., Gannon, C., JAVS Jovial Automated Verification System,

Vol; 2, General Research Corporation, CR-1-722/1, June 1978.

Brown, J. R., Lipnow, M., "Testing for Software Reliability, Proceedings

of COMPSAC 77 Computer Software and Applications Conference, November

1977, p. 21.

Clarke, L. A., "A System to Generate Test Data and Symbolically Execute

Programs" IEEE Transactions on Software Engineering, Vol. SE-2, No. 3,

September 1976.

Fischer, K. F., "Software Quality Assurance Tools: Recent Experience

and Future Requirements," Software Quality and Assurance Workshop, San

Diego, November 1978.

7-1

Gerhart, S., Yelowitz, L., "Observations of Fallibility in Applications

of Modern Programming Methodologies", Proceedings of COMPSAC 77 Computer

Software and Applications Conference, November 1977, p. 86.

Glass, R. L., Real Time Software Debugging and Testing: Introduction

and Summary, The Boeing Company, September 1979.

Holden, M. T., "Semi-Automatic Documentation of B-I Avionics Flight

Software Global Data," Naecon 1978 Record.

Howden, W. E. "Effectiveness of Software Validation Methods," Infotecn:

Software Testing, Vol. 2, 1979.

Howden, W. E., "Reliability of the Path Analysis Testing Strategy",

Proceedings of COMPSAC 77 Computer Software and Applications Conference,

November 1977, p. 99.

Howden, W. E., "An Evaluation of the Effectiveness of Symbolic Testing,"

Software - Practice and Experience., Vol. 8, 1978.

Howden, W. E., "Theoretical and Empirical Studies of Program Testing,"

IEEE Transactions on Software Engineering, Vol. SE-4, No. 4, July 1978.

King, J., "Symbolic Execution and Program Testing", Proceedings of

COMPSAC 77 Computer Software and Applications Conference, November 1977,

p. 191.

Miller, E. F., Jr., Methodology for Comprehensive Software Testing,

General Research Corporation, CR-1-465, February 1975.

Miller, E. F., Jr., Paige, M., Bendon, J., Wisehart, W., "Structural

Techniques of Program Validation", Proceedings of COMPSAC 77 Computer

Software Applications Conference, November 1977, p. 179.

7-2

Miller, E. F., Jr., "Toward Automated Software Testing: Problems and

Payoffs", Proceedings of COMPSAC 77 Computer Software and Applications

Conference, November 1977, p. 16.

Moriconi, M. S., A System for Incrementally Designing and Verifying

Programs, Vol. 1, USC/Information Sciences Institute, November 1977.

Ramamoorthy, C. V., Ho, S.F., "Testing Large Software with Automated

Software Evaluation System", Proceedings of COMPSAC 77 Computer Software

and Applications Conference, November 1977, p. 121.

Stucki, L. G., et al, Software Automated Verification System Study,

McDonnell Douglas Astronautics Company, January 1974.

"SURVAYOR, The Set-Use of Routine Variables Analysis Program," TRW

Brochure, 1975.

7-

7-3 m m mmm m m mm m

APPENDIX A

MATERIAL REFERENCED IN PHASE I

The following documents were referenced in Phase 1 or will be used

in the coding implementation of the AVS in Phase 2.

Documents Describing the Implementation Environments

TITLE VENDOR'S NUMBER

1. VAX/VMS Command Language AA-DO23A-TE

User's Guide

2. VAX-1i COBOL-74 AA-C985A-TE

Language Reference Manual

3. VAX-I COBOL-74 AA-C986A-TE

User's Guide

4. VAX/VMS RMS AA-D024B-TE

Record Management Services

5. Honeywell General Comprehensive DD19D

Operating Supervisor (GCOS)

6. Honeywell Control Cards DD31C

Reference Manual (GCOS)

7. Honeywell Standard COBOL-68 DEI7

Reference Manual

8. Honeywell Standard COBOL-68 DE18

User's Guide

9. Honeywell Standard COBOL-74 DEOI

Reference Manual

10. Honeywell Standard COBOL-74 DE02

User's Guide

11. Sperry Univac 1100 Series UP-4144

Operating System Programmer Reference

A-1

12. Sperry Univac 1100 Series UP-8582

ANSI Standard COBOL (ASCII) - 1974

13. Sperry Univac 1100 Series UP-8584

COBOL (ASCII) Supplementary Reference

Documents Referenced During the Research Phase

REFERENCE/

TITLE REPORT NUMBER

1. JOVIAL Automated Verification System RADC

JAVS Technical Report TR-77-126

Reference Manual

2. FORTRAN Automated Verification System RADC

FAYS User's Manual TR-78-268

3. COBOL Instrumentation Packaage (CIP) NARDAC

For the Honeywell 6000 88-5002B

TN-02

4. COBOL Instrumentation Package (CIP) NARDAC

For the Ijnivac 1108 88-50002B

TN-01

5. JAVS Technical Report, Volume 3 GRC

Methodology Report CR-1-722

6. JOVIAL J73 AVS GRC

Part I - Technical Proposal DP-9874

7. SID - System for Incrementally USC

Designing and Verifying Programs ISI/RR-77-65

8. COBOL Segmentation Analysis Package NARDAC

for the Univac 1100 Series Computer 91Z7064

TN-03

A-2

Documents Referenced During the Research Phase (continued)

REFERENCE/
TITLE REPORT NUMBER

9. Static Profile and Dynamic Behavior of

COBOL Programs

SIGPLAN Notices Vol. 13, No. 1, April 1978

10. A Model for Estimating the Number AFIT

of Residual Errors in COBOL Programs. CI-77-97

Cecil E. Martin, Ph.D. Thesis.

11. The Verification of COBOL Programs SRI 3967

U.S. Army Computer Systems Command

Technical Documentary Report

L. Robinson, M.W., Green, J. M. Spitzen.

12. DATAPRO Directory of Software

DATAPRO Research Corporation

1805 Underwood Blvd., Delran, N.J.

13. CAPEX Optimizer III: Analyzer User Guide S02-1077-

Capex Corporation, Phoenix, AZ 135-(03-0979)

14. CAPEX Optimizer III: Detector User Guide S02-1077-

Capex Corporation, Phoenix, AZ 136-(03-0979)

15. COBOL Optimization Techniques SMG-0676-

Capex Corporation, Phoenix, AZ 39(03-0379)

16. Structured ANS COBOL, Part I

Paul Noll

Mike Murach and Associates, Inc., Fresno, CA

17. Structured ANS COBOL, Part 2

An Advanced Course

Paul Noll

Mike Murach and Associates, Inc., Fresno, CA

A-3

Documents Referenced During the Research Phase (continued)

REFERENCE/

TITLE REPORT NUMBER

18. MRI System 2000/80

Procedure Language Feature - COBOL

MRI Systems Corporation

19. DMA Programming Support Library

Structured COBOL Precompiler, Vol. 3

20. Advanced Software Quality Assurance GRC

Software Quality Laboratory User's Manual CR-4-770

21. Data Correlation and Documentation System (DCD)

CGA Computer Associates

Rockville, Maryland

22. Data Administration Systems (DAS)

CGA Computer Associates

Rockville, Maryland

A-4

y :'- " " ' '- i I i

APPENDIX B

COBOL IMPLEMENTATION SUBSET

This Appendix discusses the subset of COBOL to be employed in the

coding, testing, installation, and maintenance of the COBOL Automated

Verification System. CAVS is to be installed on the Honeywell Series

6000 at Rome Air Developent Center, and on the Univac 1100 Series

machines of the Defense Mapping Agency. It will first be coded and

tested on the Digital Equipment Corporation VAX 11/780 at General

Research Corporation. All machines support full ANS COBOL-1974 ASCII

compilers, and CAVS will use them.

In each computer's user manuals there is a method of identifying

those language constructs which are extensions of the ANSI COBOL-74

standard. CAVS is designed not to require these computer-specific

language extensions. If, however, using an extension would signi-

ficantly improve the performance or utility of CAVS on a particular

machine, it will be used. GRC will first request the approval of the

contracting agency. Any such code will be isolated in subprograms

wherever possible.

There is one major exception to the above restriction. CAVS is

based on a system originally written in FORTRAN, that makes extensive

use of FORTRAN COMMON blocks. CAVS execution speed would be severely

reduced if an equivalent construct were not available for COBOL. Since

CAVS will function primarily as an on-line program, deviation from the

ANS Standard COBOL is justified.

VAX-I COBOL supports a construct like COMMON, called EXTERNAL.

The Honeywell Series 6000 Standard COBOL supports a similar constrl'ct,

called LABELED COMMON. Thq Univac 1100 Series COBOL supports a

COMMON-STORAGE SECTION also, although its properties and syntax differ

from those of both VAX and Honeywell implementations.

B-i

___ A

This Appendix will use a format similar to the Univac ASCII COBOL

Programmer's Reference. The implementation subset will be described in

numbered sections, in the following order:

1. General concepts

2. Major omissions from ANSI Standard COBOL

3. Identification division

4. Environment division

5. Data division

6. Procedure division

7. Table handling

8. General I/0 considerations

9. Sequential I/0

10. Relative I/0

11. Library

12. Debug

13. Inter-Program Communication

Paragraphs within these standards will be numbered to simplify

reference to a specific standard.

B.1 GENERAL CONCEPTS

1. CAVS will use the ASCII compilers for all three implementations.

Characters stored on disk, and characters used in communication

between calling and called programs, will be in ASCII format.

Numeric data will be almost entirely full-word binary integers.

Numbers used for reporting, diagnostic, and display purposes will

be moved to the appropriate DISPLAY-usage ASCII fields.

2. Comments take three forms in COBOL:

* An asterisk in column 7 is the standard comment character.

" A "D" in column 7 can be either a comment or an indicator of

debug statements.

_B-2

0 Certain keywords delimit an entire paragraph ot comments.

CAVS will use the asterisk and the "D" to define comments.

DATE-COMPILED will be used to insert the compile date in the

source listing.

No other methods of delimiting comments, such as "REMARKS" in the

Identification Division and "NOTE" in the Procedure Division, will

be used. These have been removed from the 1974 standard.

3. CAVS must analyze itself during the self-test portion of its

installation. This capability will also be used to scan for

non-portable language constructs which would prevent successful

conversion.

B.2 OMISSIONS FROM ANS COBOL-74

The following major COBOL features will not be used in the final,

installed versions of CAVS:

1. Control Division

2. Sort/Merge

3. Report Writer

4. Communications Division

5. Index-Sequential I/O

B.3 IDENTIFICATION DIVISION

1. All CAVS programs and subprograms will have PROGRAM-ID's of six

characters or less.

2. Special test programs, not included in the final product, may have

names longer than six characters, but these names must be unique

within the first five characters.

B-3

3. DATE-COMPILED will be used to insert the compile date within the

compile listing.

B.4 ENVIRON14ENT DIVISION

1. SOURCE-COMPUTER will not be used, unless debugging-mode is also in

use.

2. OBJECT-COMPUTER will not be used.

3. The SPECIAL-NAMES paragraph will be used. ANSI COBOL requires the
use of "WRITE... AFTER/ BEFORE ADVANCING" which in turn is required

to define a special name for page feeds.

Computer-specific special names required to implement input and

output will be standardized for each computer.

B.5 DATA DIVISION

1. Level 77 data items will not be used. It will probably be removed

from future COBOL standards.

2. Data types.

* Character data will be stored as ASCII.

* "USAGE IS INDEX" will be used in limited cases. Source code

translated from FORTRAN will not use it.

* Most numeric information will be stored as full-word

integers. The Honeywell data definition is "USAGE IS

COMPUTATIONAL". The Univac data definition is "PIC S9(10)

USAGE IS COMPUTATIONAL".* Sign position will be represented

according to the default f or each machine.

3. Renames will not be used.

B-4(

B.6 PROCEDURE DIVISION

1. Logical statements will use the spelled-out logical operators

instead of the symbols. For example CAVS will use "EQUALS"

instead of .

2. Computation and assignment statements.

0 CAVS does not perform any complicated calculations; most

computations increment or decrement subscripts as tables are

manipulated.

* Numerical assignment will be done by means of COMPUTE, ADD,

and SUBTRACT statements.

* Simple alphanumeric assignments will be done by using

"MOVE".

* Special calculations will be required to compute the CPU

time consumed during testing. These calculations use

machine-specific data formats and formulae, and will be

isolated in subprograms.

4. Statements not used:

0 ALTER

* DIVIDE

* MULTIPLY

* CORRESPONDING forms of ADD, SUBTRACT, MULTIPLY, DIVIDE,

and MOVE, such as MOVE CORRESPONDING.

5. Statements which will be used are

* ACCEPT

* ADD

CALL

B -5

* DISPLAY

" EXIT

" GOTO (in code produced by the precompiler)

* IF

" MOVE

" PERFORM

* SET

0 SUBTRACT

* STOP

6. The VAX-1I COBOL supports structured programming constructs which

delimit conditional expressions. Examples of such constructs are

END-IF and END-PERFORM. The CAVS contract calls for the use of

the DMA PSL Structured COBOL precompiler. Because the CAVS

contract requires use of the precompiler, and because Univac and

Honeywell do not support native COBOL structured programming

constructs, the VAX constructs (except for END-IF) will not be

used.

The DMA precompiler constructs to be used are:

* CASE

0 CASENTRY

* ELSECASE

* ENDCASE

* DO

0 DO UNTIL

* DO WHILE

* ENDDO

* IF

* ENDIF

B-6 /

7. Statements which may be used in isolated, data-editing contexts

* are:

INSPECT

* STRING

0 UNSTRING

B.7 TABLE HANDLING

1. Index data items will be used to improve performance in restricted

contexts.

2. SET will be used to manipulate index data items and to convert

them to printable and display formats.

3. Both sequential and binary searches using the SEARCH verb will be

used.

B.8 GENERAL I/O CONSIDERATIONS

1. Blocking and buffering of CAVS data fiies will be established and

tuned for each installation.

2. Honeywell I/O will be controlled by the Unified File Access System

(UFAS) that is native to the COBOL-74 compiler.

3. The implementor-name field of the ASSIGN clause in the SELECT

statement will be six characters, the first two of which must be

unique.

4. Where possible, the actual file name of files used will be

assigned and controlled by the job control. Matching of the

external physical file with the internal logical file name will be

done by means of the ASSIGN clause.

Now-

The VALUE-OF-ID clause will be used to specify the physical file

name only when it must be dynamically assigned or changed.

5. The file status keys will be used to diagnose the result of all

file I/O statements.

6. Indexed Sequential files will be not used.

7. All files except for tape files used for CAVS source installation

will use standard labels.

8. Checkpoint/restart will not be used.

B.9 SEQUENTIAL I/O

1. Printer output and pagination will be controlled by counting

lines. LINEAGE will not be used.

2. CAVS will read and write COBOL source in ASCII. If the final

input or output should be in Fieldata, the Univac System utility

@ FURPUR will be used to convert them.

3. Programs instrumented by CAVS will produce an additional sequen-

tial output file, the execution trace file. Numeric data in this

file will be stored as full word binary integers. Character data

will be stored as ASCII.

B.1O RELATIVE I/O

I. DELETE will not be used.

2. CAVS will use ASCII representation for all internal data mani-

pulation and I/O.

3. Variable-length records will not be used.

B-8 j

B.11 LIBRARY

1. The COBOL COPY feature will be used.

2. The COPY REPLACING feature may be used to simplify the conversion

of CAVS from one vendor to another.

B.12 DEBUG

1. Debug statements will be used.

B.13 INTERPROGRAM COMMUNICATION

1. APPLY (in Univac and VAX) will not be used.

2. The Common-Storage Section, while not standard COBOL, is available

on the iivac compiler, and will be used to conserve memory,

3. Multiple entry points to a subprogram will not be used.

4. The CANCEL statement will be used.

5. ENTER will not be used.

B-9

MISSION
Of

Romn Air Developmnt Center
RADC pPanZ6 and exec~ute4 we,"Wch, devetopmentt, te~t and
,6etected acquisition p'wyam~ in 6uppo'ct o6 Command, Cont'wL
Conrw tona and IntteUgne. (C31) ac-tivitie.. Techiwcat
and enginee~ing .6ppo'~t c~tin oAea6 o6 t&eznicat competec
i6 poovide4 to ESV Pxogu~m 066iceA (PO06) aznd oth&'L ESV
eement. The ptncpat tezchnico2 mL6Lon ateaa ate
comniwcation6, ete%ttomagnetic guidanc~e and contLot, 6LL4-
veALUance o6 yuand and ae~o.6pace object6, intetee.~ data
cott-ieeton and handting, in~o'w'ation 4yq6em technotogy,
ionoh6phe.&1 ptopagation, 46otid 6.&te, 4eAAlceA, micaoave
phypzic,6 and eetoniL teZtaLitt, maintainabiLtt and
comnpatiZbitt.

